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« Parent Project Objectives
* Relation to Resilient Controls
e Large Scale Anomaly Detection
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N Parent Project: AFRL City Beat
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Hypotheses:
»Cities have a pattern of life that can be studied and modeled
»Anomalous behaviors have transactional signatures
»Behavior models can be used for high fidelity simulations
Objective:
»Develop an automated system with direct and indirect sensing to
aid a human in anticipating, discovering and tracking nefarious

transactions
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« John Duselis, PhD — AFRL / RHXB

* Rik Warren, PhD — AFRL / RHXB

 Jeff Graley, M.S. — AFRL / RHXB

* Lt Col Brett Borghetti — AFIT / ENG

* Prof. James W. Davis — Ohio State Univ.
* Prof. Amit Sheth — Wright State Univ.
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* Video cameras in public places
* Publically available web-based social networking data
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\j Interactive Visualization and i« 4
Qe Camera Control

Matt Nedrich and Prof. James W. Davis
OhIO State UnlverS|ty

« Cameras fused with their environment
* Fully geo-registered framework

* Live — pano — ortho registration mapping
 Multiple control layers for efficient camera control
* Allows operators to concentrate on
environment rather than cameras

« Embedded GIS information (e.g., floor plans, class
schedules)

» Upgrade of camera network
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Kevin Streib and Prof. James W. Davis
Ohio State University

Objective: Model the movement patterns of pedestrians and Real-time Multi-object Tracking

detect anomalies from learned behavioral trends.

Research Tasks:
 Real-time multi-object tracking algorithm
* Accumulate tracks over time ( 24/7)
» Search for “Patterns of Life” — Multiple Instance Learning
* Investigate influence of contextual factors
- Day/Night, weather, scene density

Accumulated Tracks Accumulated Tracks

Typical scene _ _
Morning (8 am) Evening (8 pm)
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Drop Off

-Drop off of
person A and
big bag

-Phone call
made to person
B

-Loitering of
person A

Exchange

-Meeting
-Set down both
bags

-Check for
contents

-Walk off briskly

Tracking
of Bag

- Camera
follows person
B

-Person B walks
towards bus
stop

Sensor
Handoff

-Use bus
system routes
and schedule

-Follow bus,
check for
dismount using
bus stop
surveillance
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*Maps (Roads, Borders, Landforms)
+Labels (Buildings, Landmarks)
*Motion (Identify People, Vehicles)

*Building Information
*Schedule of Events
+City Facts

_/

*Transactional Trends
*Transportation Trends
*Socio-cultural

»>Variety of alerts —
_ Visual
o Unusual groupings 9
o Exchanges 4
o Unusual velocities/loitering Descriptive
o Off the path L
p
»Confuser Events RS
o Buses group for orientation (
o Textbook Hand-off Alerts

o Truck on sidewalk for construction '«

*Entering and Leaving Buildings
*Groupings and Dispersions
*Unusual Velocities and Loitering

»>Prioritize and address alerts

»Access indirect layers & visualization (schedules,

maps, etc)

»Ability to view multiple windows & multiple cameras

simultaneously
»Tracking capabilities
»Histograms show patterns
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\’/ Relationship to Resilient Controls
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Goal: Increase situation awareness and
security through video-based surveillance

Assumption: Ever-increasing video
availability, but human resources limited

Problem: Too much video for unassisted
humans to be fully effective in finding
Indicators & analyzing events

*Solution: Machine-aided anomaly
detection and analysis
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\/ Large Scale Anomaly Detection

Lt Col Brett Borghetti
Air Force Institute of Technology

Video / Imagery
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Discover behavior not associated with POL
(Pattern Recognition / Machine Learning)
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Building Patterns of Life Info

*Process Video
‘ldentify entities & tracks
Aggregate POL from “normal” paths

| i

12



N

©
O
2
S
| —-—
)
o
-]
N
5
—~
2 e))
S
T =
o9
> U
0w -5
0 3
5 L8

Classifiers (5

Binary
Classifier

Tracking,
Labeling

Labeled
Track-space Data

Cluster

Generator
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\/ Validation with Anomalous Tracks _
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« Simplest method for initial testing of the classifier
« Hard to Visualize / Analyze the results
. Doesn’t evaluate image processing or tracker

»Learning :> Correct
Device I Classification?
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* Need to validate system behavior

* Difficult / Expensive to coordinate anomalies during live
collection

« Can we synthesize anomalous behavior?
— Alter Image Data

— Simulate Collection Process
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« Alter images prior to tracking (or labeling)
— Add entities that are behaving anomalously in each image

— Use MATLAB to automate the process

Tracking,
(Labeling)

* (Labeled)

Original » ie
J Add Anomalies Track-space Data

Video / Imagery
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* Recreate normal and add anomalous behavior within a
simulated version of area of interest

» Collect & process video from simulation’s virtual camera
to test end-to-end system

Virtual video used
system test

as source for full

nomalies

Virtual Battlespace 2 Virtual Camera
Simulation Video
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« Compare performance of classifier with humans
* Model the human security worker’s actions

— Decision to look for more info in existing data

— Decision to take control of camera control / collection
assets

— Decision to direct emergency services / forces to
anomalies
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